For Review

Web Controls as a Replacement for ActiveX in the
MOS Protocol

Enhancements to the MOS protocol to deprecate ActiveX based plugins in place of web
controls.

Revision 2.0

By Shawn Snider

Team Leader, Inception
Ross Video Limited
August 13, 2013

Contents
The Problem with ActiveX

Other Plugin-Based Technologies

DEPreCating ACTIVEX ..ot e e e e e e e e e e e e e e e e s e e e s e s e s e e e s s s e se s s nn eee
HTML-Based WD CONTIOIScciicuiiiiiciiiee ettt sttt ettt e e s ete e e st e e e sbte e e ssnbaeeesastaeessseeeessnsanessnes

Cross Site Scripting and Cross Domain Restrictions

(@ T 1 =3 PSP UUU N
Drag and Drop

Examples

Newsroom Implementation Example

Device Implementation Example

The Problem with ActiveX

ActiveX is an old technology, widely used in the late 1990’s and early 2000’s, but has since fallen out of
favor for numerous reasons, notably it’s gaping security flaws, and lack of support on platforms other
then Windows desktop PC’s. In the coming years, it is expected that Microsoft will phase this technology
out altogether, limiting our options as it is a required part of the existing MOS specification for device
plugins.

Other Plugin-Based Technologies

During my research for this whitepaper, various other replacement technologies have been considered,
including Flash/Flex, Java based technologies such as applets and OSGl-based plugins, and even
browser-based plugin technology. Unfortunately, none of these options are particularly flexible, and
there is a high probability that most of these technologies will be unfeasible in the next ten years as
plugin based technologies, ultimately suffering the same fate as ActiveX.

Deprecating ActiveX

The proposal put forth is not an immediate replacement to ActiveX, it is an alternative technology in
which to design and build device plugins, and a standard that can be adopted to eventually replace
ActiveX for new plugins. Unfortunately, due to the existing established base of technology and legacy
devices, it is unlikely we will be able to remove all support for ActiveX based technologies in the protocol
for the foreseeable future. However, this part of the specification should be deprecated, and developers
and device vendors should be highly encouraged to adopt the new technology platform for all future
plugins, and possibly adapt existing products still in development where resources allow.

HTML-Based Web Controls

This document outlines support, including sample proof-of-concept implementations of HTML-based
device plugins. There are many benefits to this technology over ActiveX, they are extremely
customizable and flexible, the technology is will understood and continuing to be evolved, and allow for
rich creative freedom. They are also much more stable than native plugins, which is beneficial to the
user experience as a whole. They also open up MOS-based plugin technologies to other platforms aside
from Windows, including Mac and Linux desktops, tablets, and mobile devices, as well as potential
future devices.

The specification will note various points of integration for data communication between the NCS and
device plugins, and will address some of the unique challenges of web-based technologies such as the
same-origin policy and cross-domain restrictions and drag and drop behavior.

The HTML-based containers to be implemented inside the NCS to host the device-based plugins should
support HTMLS5, and be of at least IE8 compatibility or higher (or Firefox, Chrome versions of a similar
era). The inclusion of support for additional plugins embedded within a device “webpage” (such as Flash,
VLC, etc.) is to be determined.

Cross Site Scripting and Cross Domain Restrictions

One of the key challenges with integrating messaging between web-based controls hosted on different
systems are overcoming restrictions on cross-domain communication. Typically, we would love an NCS
to be able to invoke any JavaScript method on a device control that the specification defined in the
interface, however due to these restrictions this is not possible. We are going to overcome these
restrictions by effectively proxying MOS messages between the NCS and devices through a standardized
messaging channel defined in the HTML specification for cross-domain messaging. See
http://www.w3.0org/TR/webmessaging/ for more details on this specification.

Origins

In order to ensure security in cross-domain messaging applications, the notion of origins must be
considered. An origin is the source of a message, and the recipient of any message must check the origin
of that message to ensure it is coming from a known and trusted source.

When the NCS opens up a web control and loads the URL as provided by the device, it will append a
parameter to the URL called “origin’, indicating the origin of the NCS. This is typically the URL of the NCS
server, for example, a valid origin could be http://MYNCS, or http://MYNCS:8080. The device, then, can
read this origin out of the parameter list, and determine that it will only accept messages with an origin
matching that supplied from the NCS.

When the NCS sends the device a message, it will append the “target” origin as the second argument to
the message. So, for example, if the NCS wants to send a device plugin a message, it can send an
argument stack of “MOS MESSAGE”, “TARGET_DEVICE_ORIGIN”.

When the device sends a message to the NCS, it needs to supply the target origin (that of the NCS) as
the second message parameter. This target origin can be parsed from the “origin” parameter, passed
within the URL to the device’s webpage. When the NCS receives a message from a device, it should
validate the origin of the device to ensure that the message can be trusted.

Drag and Drop

Drag and drop of MOS objects from device plugins into the NCS is fully supported through standard
HTML native drag and drop mechanisms in all major browsers (Internet Explorer, Firefox, Chrome, and
Safari). The use of ondragstart and ondragend events attached to elements in the device plugin’s HTML
DOM enables this support. An example is provided in the device implementation section of this
document.

Examples

The examples provided in the following sections are proof-of-concept, and have been demonstrated as
working across all major browser implementations. They use standard behavior as noted in the HTML
specification for messaging. See http://www.w3.0org/TR/webmessaging/ for more information.

Newsroom Implementation Example

The newsroom is responsible for hosting a container capable of running the web control. This could be
an embedded web browser control (such as an Internet Explorer, Firefox, or Chrome embedded browser
inside the NCS). The specific interface between the NCS and this browser is proprietary, and defined by
the vendor. The browser itself must host an iframe or similar container that is reachable in the device
plugin via the window.parent value, and the NCS must subscribe to ‘message’ window events supplied
by the browser.

The example below illustrates this, with the assumption that the NCS itself is web-based for simplicity,
and using an iframe control to host the device plugin.

What is the Origin?

To overcome cross-site scripting and cross-domain/same-origin policy limitations inside a web browser,
we’re building the message flow over a standard messaging service built into all major browsers, and
defined as part of the HTMLS5 specification. We’'re effectively piggybacking the MOS messages across this
secure messaging service. One of the requirements for this to work is the concept of origin, to ensure
that you’re only receiving and handling messages from windows that you expect. In this case, the NCS
origin is the URL/host of the newsroom server. The origin should appear in the form is
PROTOCOL://URL[:PORT], for example http://192.168.1.100, or a hostname is also valid, such as
https://myncsserver. If a non-standard (not 80/443) port is used, it should be suffixed onto the origin.

When the NCS opens the URL for the device, we add the origin as a parameter at the end that URL,
indicating to the device the origin of the NCS that it should expect to receive messages from. The NCS
can determine the origin of the device by inspecting the URL to that device plugin, the origin being the
protocol, hostname, and (optional) port elements of that URL.

To Send a Message to the Device

In this case, the NCS would invoke the mosMsgFromHost message, which locates the iframe container
by ID, and invokes a “postMessage” method, passing in both the message, and the device origin (the
target) URL. If there is a reply to be expected to this message, it will be handled as an inbound message
in the mosMsgFromPlugin event.

To Receive and Reply to a Message from the Device

The mosMsgFromPlugin function is defined, and receives an event. This function is registered against
the current window, so that whenever an event from the iframe is received, this function is invoked. The
body of the message is located in event.data, as defined as part of the HTML specification. To reply to
this message, simply invoke the postMessage method on the event.source, passing in the reply
message, and the event origin.

Sample Code for Messaging

<html>
<head>

<script type="text/javascript”>

var DEVICE_URL

‘http://mydevice:8080/index.html’;

var NCS_ORIGIN = window.location.protocol + "//" + window.location.host;
var DEVICE_ORIGIN = DEVICE_URL;

if (DEVICE_URL.indexOf('/', 8) >= @) {
DEVICE_ORIGIN = url.substring(®, url.indexOf('/', 8));
}

function mosMsgFromPlugIn(event) {

var message = event.data;

// Handle the Message
// To Reply, issue a postMessage on the event source.

var reply = “SOME MESSAGE”;
event.source.postMessage(reply, event.origin);

}

function mosMsgFromHost(message) {

document.getElementById(‘plugin’).contentWindow.postMessage(message,
‘http://DEVICE_ORIGIN’);

}

// Register the Event Handler - Cross Browser
if (window.addEventListener) {

window.addEventListener('message', mosMsgFromPlugIn, false);
} else if (window.attachEvent) {

window.attachEvent('message', mosMsgFromPlugIn, false);

}

</script>
</head>

<body>
<iframe id="plugin” src="”DEVICE_ URL?origin=NCS_ORIGIN”/>
</body>

</html>

Device Implementation Example
The device implementation is similar to the newsroom implementation, but slightly simpler as it does
not have to concern itself with embedding any control, it is entirely written in HTML and hosted on the

device as an HTTP service.

The device is expected to provide the NCS with a public URL for which, when requested, serves up an
HTML document. This document needs to register the appropriate listeners (as noted in the code
example below) to subscribe to MOS messages received by the window.

Sample Code for Messaging
The NCS ORIGIN is provided to the device as a parameter in the invoked URL called “origin”. This should
be validated whenever we receive a message to ensure it came from the expected window.

<html>
<head>

<script type="text/javascript”>
function getNewsroomOrigin() {

var gs = document.location.search.split("+").join(" ");
var params = {};
var regex = /[?2&]?([*=]+)=(["&]*)/g;

while (tokens = regex.exec(gs)) {
params[decodeURIComponent(tokens[1])] = decodeURIComponent(tokens[2]);

}

return params['origin'];
}
function mosMsgFromHost(event) {

var message = event.data;

// Check the Origin in event.origin to ensure it matches our expected NCS origin
// parameter.

if (event.origin != getNewsroomOrigin()) {
alert('Origin does not match');
return;

}

// Handle the Message
// To Reply, issue a postMessage on the event source.

var reply = “SOME MOS MESSAGE”;
event.source.postMessage(reply, event.origin);

}

function mosMsgFromPlugIn(message) {

window.parent.postMessage(message, getNewsroomOrigin());

}

// Register the Event Handler - Cross Browser
if (window.addEventListener) {

window.addEventListener('message', mosMsgFromHost, false);
} else if (window.attachEvent) {

window.attachEvent('message', mosMsgFromHost, false);

}

</script>
</head>

<body><!-My Plugin HTML-></body>
</html>

Sample Code for Drag and Drop

MOS devices that wish to support object drag and drop into the NCS will be required to add the

following code to the specific object they wish to make draggable. If IE10 is used as the web browsing

container, a security setting must be enabled to allow for cross-origin/cross-domain drag and drop.

<html>
<head>
<script type="text/javascript”>

function startObjectDrag(event) {

event.dataTransfer.setData('Text', ‘MOS_OBJECT’);
event.dataTransfer.effectAllowed = "copyMove";
event.dataTransfer.dropEffect = "copy";

}

function endObjectDrag(event) {

}

</script>

<body>

<img src="’SOME_IMAGE” ondragstart="startObjectDrag(event)”

</body>

</html>

ondragend="endObjectDrag(event)”/>

